Neurexin-Neuroligin Transsynaptic Interaction Mediates Learning-Related Synaptic Remodeling and Long-Term Facilitation in Aplysia

نویسندگان

  • Yun-Beom Choi
  • Hsiu-Ling Li
  • Stefan R. Kassabov
  • Iksung Jin
  • Sathyanarayanan V. Puthanveettil
  • Kevin A. Karl
  • Yang Lu
  • Joung-Hun Kim
  • Craig H. Bailey
  • Eric R. Kandel
چکیده

Neurexin and neuroligin, which undergo heterophilic interactions with each other at the synapse, are mutated in some patients with autism spectrum disorder, a set of disorders characterized by deficits in social and emotional learning. We have explored the role of neurexin and neuroligin at sensory-to-motor neuron synapses of the gill-withdrawal reflex in Aplysia, which undergoes sensitization, a simple form of learned fear. We find that depleting neurexin in the presynaptic sensory neuron or neuroligin in the postsynaptic motor neuron abolishes both long-term facilitation and the associated presynaptic growth induced by repeated pulses of serotonin. Moreover, introduction into the motor neuron of the R451C mutation of neuroligin-3 linked to autism spectrum disorder blocks both intermediate-term and long-term facilitation. Our results suggest that activity-dependent regulation of the neurexin-neuroligin interaction may govern transsynaptic signaling required for the storage of long-term memory, including emotional memory that may be impaired in autism spectrum disorder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transsynaptic Coordination of Presynaptic and Postsynaptic Modifications underlying Enduring Synaptic Plasticity

Neurexins and neuroligins are cell adhesion molecules that form transsynaptic interactions. In this issue of Neuron, Choi et al. report that neurexin-neuroligin signaling plays a critical role in functional and structural synaptic plasticity underlying memory formation in Aplysia.

متن کامل

Dscam Mediates Remodeling of Glutamate Receptors in Aplysia during De Novo and Learning-Related Synapse Formation

Transsynaptic interactions between neurons are essential during both developmental and learning-related synaptic growth. We have used Aplysia neuronal cultures to examine the contribution of transsynaptic signals in both types of synapse formation. We find that during de novo synaptogenesis, specific presynaptic innervation is required for the clustering of postsynaptic AMPA-like but not NMDA-l...

متن کامل

Dimerization of postsynaptic neuroligin drives synaptic assembly via transsynaptic clustering of neurexin.

The transsynaptic complex of neuroligin (NLGN) and neurexin forms a physical connection between pre- and postsynaptic neurons that occurs early in the course of new synapse assembly. Both neuroligin and neurexin have, indeed, been proposed to exhibit active, instructive roles in the formation of synapses. However, the process by which these instructive roles play out during synaptogenesis is no...

متن کامل

Synapse to Nucleus Signaling during Long-Term Synaptic Plasticity a Role for the Classical Active Nuclear Import Pathway

The requirement for transcription during long-lasting plasticity indicates that signals generated at the synapse must be transported to the nucleus. We have investigated whether the classical active nuclear import pathway mediates intracellular retrograde signal transport in Aplysia sensory neurons and rodent hippocampal neurons. We found that importins localize to distal neuronal processes, in...

متن کامل

PICK1 mediates synaptic recruitment of AMPA receptors at neurexin-induced postsynaptic sites.

In the CNS, synapse formation and maturation play crucial roles in the construction and consolidation of neuronal circuits. Neurexin and neuroligin localize on the opposite sides of synaptic membrane and interact with each other to promote the assembly and specialization of synapses. However, the excitatory synapses induced by the neurexin-neuroligin complex are initially immature synapses that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2011